不確定な世界

科学の話題を中心に、勉強したことや考えたことを残していきたいと思います

量子コンピュータの基本素子・量子ビットのハードウェア実装(超伝導磁束編その4~データの書き込み・演算~)

その1~素子構造~
その2~超伝導リング詳細~
その2.5~ノイズ耐性~
その3~初期化~


では、初期化した量子ビットにデータを書き込んで演算を行う工程、つまり量子ゲートがいかにハードウェアで実現されるかを見ていこう。基本的には以前紹介したシリコン量子ビットと同じく「磁気共鳴」という物理現象を利用する。磁気共鳴や量子ゲートの基本的な説明は既にシリコン編その4で書いているので、まずはこちらを読んでいただくのがよいと思う。あまり新しく説明することはないが、シリコン量子ビット超伝導量子ビットの状況の違いには注意していただきたい。


磁束量子ビットの制御回路

まず、量子ビット周りの回路の全体図をもう一度確認しよう(図15)。

f:id:quanta087:20171222074806p:plain
図15 回路全体図(文献[1]より転載)

量子ビットの制御に用いるのは図の⑤、「Microwave line」と書かれた導線である。シリコン量子ビットの時と同じく、この導線に交流電流を流すと超伝導リングを垂直に貫く交流磁場が発生する(図16)。

f:id:quanta087:20171222221924p:plain
図16 交流磁場

この交流磁場の周波数(≒電磁波のエネルギー)が量子ビットのエネルギー差に一致しているとき、「磁気共鳴(ラビ振動)」という物理現象が起き、量子ビットというハードウェアが駆動されるのだった。なお、実際に使われる電磁波の周波数は大体数ギガヘルツ程度のオーダーである(例えば文献[1]では3.9GHz)。この共鳴周波数はジョセフソン接合の接合面積に依存する。すなわち、工場でチップを製造した時点で決まってしまう。これでは実用上都合が悪いので、後から現場でエネルギーを調節できるように工夫した「ギャップ可変」量子ビットという技術も存在する(文献[2])。

ところで、シリコン編では磁気共鳴に必要な条件として、「静磁場とそれに垂直な交流磁場」という言い方をした。しかし実は、大事なのは「静磁場と交流磁場」ではなくて「量子ビットと交流磁場」が垂直なことである*1。スピンの場合は静磁場と平行な向きを向いていたが、超伝導量子ビットは最適動作点では静磁場に対して垂直であり*2、交流磁場と静磁場は平行である*3。つまり超伝導量子ビットが回転する様子をブロッホ球で表すと、図17のように赤道面を回っているように見えるのだ(文献[3])。

f:id:quanta087:20171223015014p:plain
図17 超伝導量子ビット「回転」

このように、量子ビットを適当な時間ラビ振動させることによって「プラスの重ね合わせ状態」と「マイナスの重ね合わせ状態」が重ね合わせ状態になる*4。すなわち、1量子ビットに対する「θ-回転ゲート」という量子論理演算が行われ、超伝導量子ビット \displaystyle \alpha |+> + \beta |->というデータが書き込まれたことになる。

なお、この記事では「(データの)書き込み」と「演算」をあまり区別していない。普通のコンピュータなら「論理回路で演算した結果をレジスタに書き込む」などといった使い分けをするだろうが、量子ビットは演算結果をそのまま自分で持ち続けるため、論理回路とメモリを兼ねているのだ。将来技術が進んで、演算用量子ビットと保存用量子ビットが明確に分かれたらまた話が違ってくるだろう。

データ読み出し(測定)の準備

量子ビットへのデータ書き込みの話はこれで終わる。ここからの話は本来は次回に回すべき内容である。しかし次回は話が少し難しくなるので量的に分散しておきたいという事情に加え、頭の中に \displaystyle \alpha |+> + \beta |->という式が残っているうちに説明しておきたいことがあるのだ。そういうわけで、少しだけフライングさせてもらいたい。

端的に言おう。実は、最適動作点で動作している量子ビットからはデータを取り出すことができないのだ。その理由はデータ読み出しの仕組みにある。詳細は次回の記事で説明するが、磁束量子ビット読み出し用回路(SQUID)は、右回りの電流が生み出す磁場と、左回りの電流が生み出す磁場の強さの違いを読み取る。しかし最適動作点ではどちらの磁場の強さも同じであるため、この手法を使うことができないのである(文献[1])。このため、データを読み出すときだけは超伝導リングに与えている磁場を\displaystyle \frac{\Phi_0}{2}から弱め、「右回り」と「左回り」がビットとなるような状態に戻してあげなくてはいけないのだ*5*6
ここで重要なのは、この操作の前後で、量子ビットに書き込んだデータはきちんと保存されているということだ。すなわち \displaystyle \alpha |+> + \beta |->という重ね合わせ状態は、そのまま \displaystyle \alpha |右> + \beta |左>という状態に変換されるのである(図18)。

f:id:quanta087:20171223194507p:plain
図18 データ読み出し(測定)の準備

とりあえずこれでデータ読み出しのための準備は完了だ。この続きは次回の記事で説明することにする。

今回はここまで

次回は量子ビットに書き込んだデータを読み出す技術、言い換えれば量子ビットを「観測」する方法について説明する。
その5~データの読み出し(測定)~

*1:なお、ここでいう向きとはブロッホ球上での話であり、必ずしも実空間と対応するとは限らない

*2:専門用語では「システムハミルトニアン\displaystyle \sigma _xである」という

*3:同じく「場のハミルトニアン\displaystyle \sigma _zである」という

*4:ややこしいので、「右回り」と「左回り」が基準になるような見方に直して、重ね合わせの「位相」が変化していると考えれば見通しがいいかもしれない

*5:磁場は強めてもよくて、実際強めている文献の方が多いのだが、ここでは説明の都合上弱める方を採用する

*6:実際の論文では、例えば「初めから磁場を少し弱くしておいて、交流磁場に直流オフセットをつけることで演算時だけ最適動作点に移し、演算が終わると自動的に磁場が弱い領域に戻る」といった手法が使われている。このような工夫は面白いが話がややこしくなるので、この記事では採用していない